The integral ∫42logx2logx2+log(36−12x+x2)dx is equal to :
We have,
∫42logx2logx2+log(36−12x+x2)dx
So,
We know that,
∫baf(x)dx=∫baf(a+b−x)dx
I=∫42logx2logx2+log(6−x)2dx
⇒I=∫422logx2logx+2log(6−x)dx
⇒I=∫42logxlogx+log(6−x)dx......(1)
Using property and we get,
⇒I=∫42log(6−x)logx+log(6−x)dx......(2)
On adding (1) and (2) to, and we get,
2I=∫42logx+log(6−x)logx+log(6−x)dx
2I=∫421dx
2I=[x]24
2I=4−2
2I=2
I=1
Hence,
this is the answer.