wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral 1(cotx)2008tanx+(cotx)2009dx is equal to
(C is constant of integration)

A
12010ln(sinx)2011+(cosx)2011+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12011ln(sinx)2010+(cosx)2010+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12010ln(sinx)2010+(cosx)2010+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12011ln(sinx)2011+(cosx)2011+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 12010ln(sinx)2010+(cosx)2010+C
Let I=1(cotx)2008tanx+(cotx)2009dx

I=sin2009xcosx[(sinx)2008(cosx)2008]sin2008x[(sinx)2010+(cosx)2010] dxI=(sinx)2009cosx(cosx)2009sinx(sinx)2010+(cosx)2010dx

Assuming (sinx)2010+(cosx)2010=t
2010[(sinx)2009cosx(cosx)2009sinx] dx=dt
Therefore,
I=12010dtt =12010ln(sinx)2010+(cosx)2010+C

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon