The integral ∫dx(1+√x)√x−x2 is equal to: (where C is a constant of integration).
A
−2√1−√x1+√x+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2√1+√x1−√x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−√1−√x1+√x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2√1+√x1−√x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−2√1−√x1+√x+C I=∫dx(1+√x)√x−x2 Put x=cos2θdx=−2cosθsinθdθI=∫−2cosθsinθdθ(1+cosθ)cosθsinθ=−2∫dθ2cos2θ2=−∫sec2(θ2)dθ=−2tanθ2+Ccosθ=√x,andtanθ2=√1−cosθ1+cosθI=−2√1−√x1+√x+C