The correct option is C −1(secx+tanx)11/2{111+17(secx+tanx)2}+k
I=∫sec2x(secx+tanx)9/2dx
Let secx+tanx=t
or secx−tanx=1/t
Now, (secxtanx+sec2x)dx=dt
or secxdx=dtt
Also, 12(t+1t)=secx
∴I=12∫(t+1t)t9/2dtt
=12∫(t−9/2+t−13/2)dt
=12⎡⎣t−92+1−92+1+t−132+1−132+1⎤⎦+k
=12⎡⎣t−7/2−72+t−11/2−112⎤⎦+k
=−17t−7/2−111t−11/2+k
=−171t7/2−1111t11/2+k
=−1t11/2(111+t27)
=−1(secx+tanx)11/2{111+17(secx+tanx)2}+k