wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sec2x(secx+tanx)9/2 dx equals (for some arbitrary constant k)

A
1(secx+tanx)11/2{11117(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(secx+tanx)1/11{11117(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(secx+tanx)11/2{111+17(secx+tanx)2}+k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1(secx+tanx)11/2{111+17(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1(secx+tanx)11/2{111+17(secx+tanx)2}+k
I=sec2x(secx+tanx)9/2dx
Let secx+tanx=t
or secxtanx=1/t
Now, (secxtanx+sec2x)dx=dt
or secxdx=dtt
Also, 12(t+1t)=secx
I=12(t+1t)t9/2dtt
=12(t9/2+t13/2)dt

=12t92+192+1+t132+1132+1+k

=12t7/272+t11/2112+k

=17t7/2111t11/2+k

=171t7/21111t11/2+k
=1t11/2(111+t27)
=1(secx+tanx)11/2{111+17(secx+tanx)2}+k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon