The integral ∫sec2x(secx+tanx)9/2dx equals (for some arbitrary constant k)
Put secx+tanx=t
secx(secx+tanx)dx=dt
secxdx=dtt
and secx−tanx=1t
secx=t+1t2
∫secxt.t9/2dt=∫12(t+1t)t.t9/2dt
=12∫(1t9/2+1t13/2)dt
=−12[27t7/2+111t11/2]+k
=−1t11/2[t27+111]+k
=−1(secx+tanx)112{111+17(secx+tanx)2}+k