wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sec2x(secx+tanx)9/2 dx equals (for some arbitrary constant k)

A
1(secx+tanx)11/2 {11117(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(secx+tanx)11/2 {11117(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(secx+tanx)11/2{111+17(secx+tanx)2}+k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1(secx+tanx)11/2{111+17(secx+tanx)2}+k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1(secx+tanx)11/2{111+17(secx+tanx)2}+k
I=sec2x(secx+tanx)92dx

Let secx+tanx=t

secxtanx=1t

Now (secxtanx+sec2x)dx=dt

secx(secx+tanx)dx=dt

secxdx=dtt,12(t+1t)=secx

I=12(t+1t)t92dtt

=12(t92+t132)dt

=12⎢ ⎢ ⎢t92+192+1+t132+1132+1⎥ ⎥ ⎥

=171t721111t112

=1t112(111+t27)

=1(secx+tanx)112{111+17(secx+tanx)2}+k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon