The integral ∫sin2xcos2x(sin3x+cos3x)2dx is equal to :
A
1(1+cot2x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−13(1+tan3x)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sin3x1+cos3x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−cos3x3(1+sin3x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−13(1+tan3x)+c I=∫sin2xcos2x(sin3x+cos3x)2dx Dividing both denominator and numerator by cos6x, we get =∫tan2xsec2x(1+tan3x)2dx Substitute 1+tan3x=t⇒3tan2xsec2xdx=dt The integral becomes 13∫dtt2=−13×1t+C=−13(1+tan3x)+C