The integral ∫(xxsinx+cosx)2dx is equal to
(where C is a constant of integration)
A
tanx−xsecxxsinx+cosx+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
secx−xtanxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secx+xtanxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanx+xsecxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Atanx−xsecxxsinx+cosx+C ∫(xxsinx+cosx)2dx ∫xsecx.xcosx(xsinx+cosx)2dx
Put (xsinx+cosx)=t ⇒xcosxdx=dt =xsecx(−1xsinx+cosx)+∫secx+x(secx)(tanx)(xsinx+cosx)dx =−xsecxxsinx+cosx+∫(cosx+xsinx)cos2x(xsinx+cosx)dx =−xsecxxsinx+cosx+tanx+C