The correct option is D 4√3−4−π3
π∫0√1+4sin2x2−4sinx2 dx=π∫0√(1−2sinx2)2 dx
=π∫0∣∣∣1−2sinx2∣∣∣ dx
Put x2=t ∴ dx=2dt and t=0,t=π2
∴π∫0∣∣∣1−2sinx2∣∣∣ dx=2π2∫0|1−2sint| dt
=2⎡⎢
⎢
⎢⎣π6∫0(1−2sint) dt+π2∫π6(2sint−1) dt⎤⎥
⎥
⎥⎦
=2([t+2cost]π/60+[−2cost−t]π/2π/6)
=2(π6+2√32−2−π2+2√32+π6)
=2(4√32−2−π6)
=4√3−4−π3