The correct option is A 110[π4−tan−1(19√3)]
I=π/4∫π/6dxsin2x(tan5x+cot5x)
⇒I=π/4∫π/6(1+tan2x)dx2tanx(tan5x+1tan5x)
Put tan x=t⇒⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩t=tanπ6=1√3t=tanπ4=1
⇒sec2x dx=dt
⇒(1+tan2x)dx=dt
∴I=1∫1/√312t(t5+1t5)dt
⇒I=1∫1/√3t42(t10+1)dt
Put t5=u⇒5t4dt=du
⇒I=1101∫3−5/21u2+1du
⇒I=[110tan−1u]13−5/2
=110[π4−tan−13−5/2]
=110[π4−tan−1(19√3)]