wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral π0xf(sinx)dx is equal to

A
π2π0f(sinx)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π4π0f(sinx)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ππ/20f(sinx)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ππ/20f(cosx)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A π2π0f(sinx)dx
B ππ/20f(cosx)dx
D ππ/20f(sinx)dx
Let I=π0xf(sinx)dx
Using property 2a0f(x)dx=a0f(x)dx+a0f(2ax)dx
I=π20xf(sinx)dx+π20(πx)f(sin(πx))dx=π20πf(sinx)dx
Now using property a0f(x)dx=a0f(ax)dx
I=π20πf(sin(π2x))dx=ππ20f(cosx)dx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon