The integral ∫xcos−1(1−x21+x2)dx is equal to :
(Note : (x>0))
∫xcos−1(1−x21+x2)dx(x>0)
x=tanθdx=sec2θdθ
I=∫tanθcos−1(cos2θ)sec2θdθ
I=∫2θtanθsec2θdθ
Using by parts
∫u.v dx=u∫v dx −∫(dudx∫v dx)dx
I=2θ∫tanθsec2θdθ−∫2⋅∫tanθsec2θdθ
=2θtan2θ2−2×12∫tan2θdθ
=θtan2θ−[∫(−1+sec2θ)dθ] ................. sec2x=1+tan2x
=θtan2θ+θ−tanθ+c
=θ(1+tan2θ)−tanθ+c
Replacing θ by x,
I=(tan−1x)(1+x2)−x+c
=−x+(1+x2)tan−1x+c