A:
∫x2−x+1x3−4x2+4xdx=∫[k1x+k2x−2+k3(x−2)2]dx
Hence, options 1, 2 and 3 are correct for option A.
B. ∫x2−1x(x−2)3dx=∫[k1x+k2x−2+k3(x−2)2+k4(x−2)3]dx
Hence, options 1, 2 and 3 are correct for B
C
∫dxx3+1x(x−2)2dx=∫[(x3+1x(x−2)2−1)+1]
=∫[(x3+1−x(x−2)2x(x−2)2)+1]dx
=∫[(k1x+k2x−2+k3(x−2)2)+1]dx
Hence, options 1, 2, 3 and 4 are correct for C
D
∫x5+1x(x−2)3dx=∫[x+k+g(x)x(x−2)3]dx,
∫[x+k+k1x+k2(x−2)+k3(x−2)2+k4(x−2)3]dx
Hence, options 1, 2, 3 and 4 are correct for D