The integral ∫10tan−1(2x−11+x−x2)dx simlifies to a value:
Open in App
Solution
∫10tan−1(2x−11+x−x2)dx =∫10tan−1(x+x−11−x(x−1))dx ∫10(tan−1x+tan−1(x−1))dx ∫10tan−1xdx+∫10tan−1(x−1)dx Applying ∫a0f(x)dx=∫a0f(a−x)dx in the first integral =∫10tan−1(1−x)dx+∫10tan−1(x−1)dx =∫10tan−1(1−x)dx−∫10tan−1(1−x)dx=0