wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sec2x(secx+tanx)9/2dx equals (for some arbitrary constant K )

A
1(secx+tanx)11/2{11117(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(secx+tanx)1/11{11117(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(secx+tanx)11/2{111+17(secx+tanx)2}+K
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1(secx+tanx)11/2{111+17(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1(secx+tanx)11/2{111+17(secx+tanx)2}+K
6Put t=secx+tanxsecxtanx=1t
secx=t2+12t
secx(secx+tanx)dx=dtdx=2dtt2+1
sec2x(secx+tanx)9/2dx=(t2+1)24t9/2+2×2dtt2+1=12dtt9/2+dtt13/2=t7/27t11/211=1(secx+tanx)11/2(111+17(secx+tanx)2)+K

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon