The integral ∫sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx is equal to
I=∫sin2xcos2xdx[sin2x(sin3x+cos3x)+cos2x(sin3+cos3x)]2
=∫sin2xcos2xdx[(sin2x+cos2x)(sin3x+cos3x)]2
=∫sin2xcos2xdx(sin3x+cos3x)2
=∫sin2xcos2xdxcos6x(tan3x+1)2
=∫tan2xsec2x(tan3x+1)2
Put tan3x+1=t
∴3tan2xsec2xdx=dt
=∫dt3t2
=−13t+1
=−13(tan3x+1)+c