The integral ∫sin2xcos2x(sin5x+cos3xsin3xcos2x+cos5x)2dx is equal to
A
−13(1+tan3x)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
11+cot2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−11+cot2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13(1+tan3x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−13(1+tan3x)+C ∫sin2xcos2xdx(sin2x(sin3x+cos3x)+cos2x(sin3+cso3x))2⇒∫sin2cos2x(sin2+cos2)(sin3+cos3x)2⇒∫sin2xcos2xdx(sin3x+cos3x)2dividedbycos3x⇒∫sec2xtan2x(tan3x+1)2dx[1+tan3x=t3tan3xsec2xdx=dt]⇒13∫dtt2=−131t+c⇒−13(1+tan3x)+c