The integral ∫2x12+5x9(x5+x3+1)3 dx is equal to : where C is an arbitary constant.
∫2x12+5x9x2+x3+1dx=∫(2x3+5x6)dx(1+1x2+1x5)31+1x2+1x5=t(−2x3−5x6)dx=dt=∫−dtt3=12t2+C12(1+1x2+1x5)3+C=x102(x5+x3+1)2+C