The correct options are
A −(secx−tanx)11/2{111+17(secx−tanx)2}+K
C −1(secx+tanx)11/2{111+17(secx+tanx)2}+K
Let secx+tanx=t
⇒secx(secx+tanx)dx=dt
Also, 1t=secx−tanx (∵sec2x−tan2x=1)
⇒2secx=t+1t
⇒secx=12(t+1t) ⋯(i)
Then, ∫sec2x(secx+tanx)9/2dx
=∫sec2xt9/2.dttsecx
=∫secxt11/2dt
=12∫t+1tt11/2dt [From (i)]
=12∫dtt9/2+12∫dtt13/2
=−17t7/2−111t11/2+K
=−1(secx+tanx)11/2{111+17(secx+tanx)2}+K
=−(secx−tanx)11/2{111+17(secx−tanx)2}+K [∵secx+tanx=1secx−tanx]