wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx is equal to

A
13(1+tan3x)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
11+cot3x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
11+cot3x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13(1+tan3x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 13(1+tan3x)+C
sin2xcos2x(sin5x+sin3xcos2x+sin2xcos3x+cos5x)2dx
=sin2xcos2x[cos6x(sin5xcos3x+sin3xcosx+sin2x+cos2x)2]dx
=sin2xcos2x.1cos2x[(sin3xcos3x.sin2x+sin2x.sinxcosx+sin2x+cos2x)2]dx
=sec2x.tan2x(tan3x.sin2x+sin2x.tanx+1)2dx [1secx=cosx,sin2x+cos2x=1]
=sec2x.tan2x(tanx.sin2x+(1+tan2x)+1)2dx
=sec2x.tan2x(tanx.sin2x+sec2x+1)2dx [1+tan2x=sec2x]
=sec2x.tan2x(1+tanx.sin2xcos2x)2dx
=sec2x.tan2x(1+tan3x)2
=13d(1+tan3x)(1+tan3x)2
=13(1+tan3x)2+12+1
=13(1+tan3x)+c
Hence, the answer is 13(1+tan3x)+c.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon