The correct option is A 110(π4−tan−1(19√3))
I=π4∫π6dxsin2x(tan5x+cot5x)
I=π4∫π6dx2tanx1+tan2x(tan5x+1tan5x)
I=π4∫π6sec2x dx2tanx(tan10x+1tan5x)
Let tanx=t⇒sec2xdx=dt
I=1∫1√3t5dt2t(t10+1)
I=121∫1√3t4dt(t10+1)
Let t5=k⇒5t4dt=dk
I=1101∫(1√3)5dkk2+1dk
I=110[tan−1k]1(1√3)5
I=110(π4−tan−119√3)