wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

The integral π4π6dxsin2x(tan5x+cot5x) equals:

A
110(π4tan1(193))
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
15(π4tan1(133))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π40
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
120tan1(193)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 110(π4tan1(193))
I=π4π6dxsin2x(tan5x+cot5x)

I=π4π6dx2tanx1+tan2x(tan5x+1tan5x)

I=π4π6sec2x dx2tanx(tan10x+1tan5x)
Let tanx=tsec2xdx=dt

I=113t5dt2t(t10+1)
​​​​​​​​​​​​​​I=12113t4dt(t10+1)
Let t5=k5t4dt=dk
​​​​​​​​​​​​​​I=1101(13)5dkk2+1dk
I=110[tan1k]1(13)5

I=110(π4tan1193)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon