The correct option is B 16[ln∣∣∣x6−1x6∣∣∣+x−6+12x−12]+c
I=∫dxx13(x6−1)=∫x5dxx18(x6−1)
Put x6=t⇒6x5dx=dt
⇒I=∫dt6t3(t−1)=16∫dtt3(t−1)
Using partial fractions, we have:
1t3(t−1)=At−1+Bt2+Ct+Dt3
⇒1t3(t−1)=At3+Bt3+Ct2−Bt2+Dt−Ct−Dt3(t−1)
On comparing the coefficents, we have:
D=C=B=−1;A=1
∴I=16∫(1t−1−t2+t+1t3)dt
⇒I=16∫(1t−1−1t−1t2−1t3)dt
⇒I=16[ln(t−1t)−t−1−1−t−2−2]+c
⇒I=16[ln∣∣∣x6−1x6∣∣∣+x−6+12x−12]+c