The integral part of (5+2√6)n where n∈N is
Let (5+2√6)n=I+f, where I is an integer and f is such that 0≤f<1.Now, let f′=(5−2√6)n,0<f′<1 Also 1+f+f′=(5+2√6)n+(5−2√6)n=2{5n+nC25n−2(2√6)2+nC45n−4(2√6)4+.....}=2 (Integer) =2k(k∈N)
Hence f+f′=2k−I is an integer, but 0<f+f′<2
∴f+f′=1
∴1=2k−II=2k−1=odd integer
Hence Integral part (5+2√6)n is odd integer