The correct option is A 197
Let (√2+1)6=1+F,where I is the integral part. Then 0<F<1Let f=(√2+1)60<√2−1<1⇒0<(√2+1)6<1⇒0<f<10<F<1,0<f<1⇒0<F+f<2I+F+f=(√2+1)6+(√2−1)6=2[6C0(√2)6+6C2(√2)4+6C4(√2)2+6C6]=2[8+15(4)+15(2)+1]=2×99=198I+F+f,I are integers⇒F+f is an integer0<F+f<2,F+f is an integer⇒F+f=1I+F+f=198⇒I+1=198⇒I=197