The integral ∫sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx is equal to
1(1+cot3x)+C
-1(1+cot3x)+C
13(1+tan3x)+C
-13(1+tan3x)+C
Explanation for the correct option:
∫sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx=∫sin2xcos2xsin2xsin3x+cos3x+cos2xsin3x+cos3x2dx=∫sin2xcos2xsin2x+cos2xsin3x+cos3x2dx=∫sin2xcos2xsin3x+cos3x2dx
Divide by cos3x in numerator and denominator we get
=∫sec2x·tan2x(tan3x+1)2dx
Let 1+tan3x=t
3tan2xsec2xdx=dt
=13∫dtt2=-131t+C=-131+tan3x+C
Hence the correct option is option(d) i.e. -13(1+tan3x)+C.
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: