The integrating factor of the differential equation dydx=y tan x−y2 sec x is
[MP PET 1995; Pb. CET 2002]
secx
The differential equation
is dydx−y tan x=−y2 sec xI.F.=e−∫ tan x dx
This is Bernoulli's equation i.e. reducible to
linear equation.
Dividing the equation by y2, we get
1y2dydx−1y tan x=−sec x............(i)
Put 1y=y⇒−1y2dydx=dYdx
Equation (i) reduces to −dydx=−y tan x=−sec x⇒dYdx+Y tan x=sec x, Which is a linear equation
Hence I.F.=e−∫ tan x dx=sec x.