The intergral ∫dxx2(x4+1)3/4 eauals:
−(x4+1)1/4+c
−(x4+1x4)1/4+c
(x4+1x4)1/4+c
(x4+1)1/4+c
I=∫dxx2(x4+1)3/4=∫dxx5(1+x−4)3/4Let x−4=y⇒−4x−5dx=dy⇒dx=−14x5dy=I=−14∫x5dyx5(1+y)34=−14∫dy(1+y)3/4=−14×4(1+y)1/4=−(1+x−4)1/4+c=−(x4+1x4)1/4+c
The solution of the differential equation x dydx+y=x2+3x+2 is