The correct option is C (0,−1)
From Point (11)
S1:x2+y2−2x+4y+4=0
C1≡(1,−2) and r1=1
S2:x2+y24x−2y+1=0
C2≡(−2,1) and r2=2
∴r1=1 r2=2C1(1,−2)p(x,y)C2(−2,1)
x=−2+21+2 & y1×1+2(−2)1+2
x=0 & y=−33=−1
(0,−1) is internal centre of similitude of the circles S1 and S2.