The correct option is
D tan−1(b−a)√abLet us find the point of intersection of ellipse
x2a2+y2b2=1 ...(1)
and circle x2+y2=ab ...(2)
We have, x2a2+1b2(ab−x2)=1⇒x2(1a2−1b2)=1−ab=b−ab
⇒x2(b2−a2)a2b2=b−ab⇒x2=a2ba+b ...(3)
and y2=ab−x2⇒y2=ab−a2ba+b (Using (1) and (3))
⇒y2=ab(a+b−a)a+b=ab2a+b
∴ Intersection point is ⎛⎝√a2ba+b,√ab2a+b⎞⎠
The slope of tangent to ellipse at any point (x1,y1) is
m1=−b2x1a2y1=−b2a2√a2ba+b√ab2a+b=−b2a2√ab
and slope of tangent to the circle is
m2=−x1y1=−√ab
∴θ=tan−1⎛⎜
⎜⎝−√ab+b2a2√ab1+b2a2.ab⎞⎟
⎟⎠=tan−1(b−a)√ab