The correct option is D [−12,12]
Given : 2tan−12x=sin−14x1+4x2
Let y=4x1+4x2
⇒4yx2−4x+y=0∵x∈R⇒D≥0⇒16−16y2≥0⇒y2−1≤0⇒y∈[−1,1]
So,
sin−14x1+4x2∈[−π2,π2]
The above equality is possible only when,
−π2≤2tan−12x≤π2⇒−π4≤tan−12x≤π4⇒−1≤2x≤1⇒−12≤x≤12
Hence, the required values of x is
x∈[−12,12]