The correct option is C (π3,5π3)
Given
y=x−2sinx,0≤x≤2π
On differentiating both sides w.r.t x we get
dydx=1−cosx
dydx=0 (Given)
1−2cosx=0
cosx=12
∵0≤x≤2π
For x=π3,5π3,cosx=12
∴dydx>0 for x∈(π3,5π3)
dydx<0 for x∈(0,π3)∪(5π3,2π)
y=x−2sinx increases in interval (π3,5π3)