The correct option is C [1,∞)
sin−1(2x1+x2)
Let x=tanθ, θ ϵ (−π2,π2),2θ ϵ (−π,π)
∴sin−1(sin2θ)
=⎧⎪
⎪⎨⎪
⎪⎩2θ ;−π2<2θ<π2π−2θ ;π2≤2θ<π−π−2θ ;−π<2θ≤−π2⎫⎪
⎪⎬⎪
⎪⎭
=⎧⎪⎨⎪⎩2tan−1x ;−1<x<1π−2tan−1x ;x≥1−π−2tan−1x ;x≤−1⎫⎪⎬⎪⎭
So 2tan−1x+sin−1(2x1+x2) is independent of x in (−∞,−1]∪[1,∞).