The correct option is A 2(1−cosωt)tu(t)
Given, X(s)=1n[1+ω2s2]
Let x(t)=L−1[X(s)]=L−1[ln(1+ω2s2)]
∴L[x(t)]=ln[1+ω2s2]=ln[s2+ω2s2]
=ln[s2+ω2]−lns2
L[tx(t)]=−dds[ln(s2+ω2)−lns2]
=−1s2+ω2.2s+1s22s=2s−2ss2+ω2
∴tx(t)=L−1[2s−2ss2+ω2]
=(2−2cosωt)u(t)=2(1−cosωt)u(t)
∴x(t)=2(1−cosωt)t u(t)