The correct option is D ⎡⎢
⎢
⎢
⎢
⎢⎣1212−12−1212−12001⎤⎥
⎥
⎥
⎥
⎥⎦
S=⎡⎢⎣1−10111001⎤⎥⎦
Determinant of matrix S=|S|=1(1−0)+1(1−0)=2≠0 ⇒S−1exist.
Now, cof(S)=⎡⎢⎣1−10110−1−12⎤⎥⎦
∴adj(S)=⎡⎢⎣11−1−11−1002⎤⎥⎦
⇒[S]−1=adj(S)|S|=⎡⎢
⎢
⎢
⎢
⎢⎣1212−12−1212−12001⎤⎥
⎥
⎥
⎥
⎥⎦