The correct option is
A 3.32Since
pH=3.19[H3O+]=6.46×10−4 M
C6H5COOH+H2O⇋C6H5COO−+H3O
Ka=[C6H5COO−][H3O+][C6H5COOH]
[C6H5COOH][C6H5COO−]=[H3O+]Ka=6.46×10−46.46×10−5=10
Let the solubility of C6H5COOAg be x mol/L
Then,
[Ag+]=x
[C6H5COOH]+[C6H5COO−]=x
10[C6H5COO−]+[C6H5COO−]=x
[C6H5COO−]=x11
Ksp[AG+][C6H5COO−]
2.5×10−13=x(x11)
x=1.66×10−6 mol/L
Thus, the solubility of silver benzoate in a pH 3.19 solution is 1.66×10−6 mol/L
Now, let the solubility of C6H5COOAg be x′ M
Then, [Ag+]=x′ M and [C6H5COO−]=x′ M
Ksp=[Ag+][C6H5COO−]
Ksp=(x′)2
x′=√Ksp=√2.5×10−13=5×10−7 mol/L
∴xx′=1.66×10−65×10−7=3.32
Hence, C6H5COOAg is approximately 3.32 times more soluble in low pH solution.