The kαX-ray of molybdenum has wavelength 0.071nm. If the energy of a molybdenum atoms with a k electron knocked out is 27.5keV, the energy of this atom when an L electron is knocked out will be (in keV). (Round off to the nearest integer) [h=4.14×10−15eVs,c=3×108ms−1]
Open in App
Solution
The total energy of kα can be given as Ekα=Ek−EL
or, hcλkα=Ek−EL
or, EL=EK−hcλkα =27.5keV−(4.14×10−15eVs)×(3×108)ms−1(0.071×10−9)m EL=27.5keV−(12.42×10−7)eVm(0.071×10−9)m
or, EL=(27.5−17.5)keV=10keV