The correct option is C 2As(1+s2R2)1/2
As we know, Fnet=√Fc2+Ft2
First calculate centripetal force (Fc)
Fc=mv2R
As we know, K.E.=12mv2
Given, K=As2
As2=12mv2
v=s√2Am
Fc=mv2R
Fc=ms22Am1R
Fc=2AS2R
For tangential force
Tangential acceleration is given as, at=dvdt
Tangential force Ft=mat
Ft=mdvdt(1)
put v in equation 1
Ft=m√2Amdsdt=m√2Amv
Ft=m√2Ams√2Am
Ft=ms2Am
Ft=2As
Fnet=√[2As2R]2+[2As]2
Fnet=2AS√1+S2R2