The correct option is A (2n+1)n
Given (2n+1)n and (2n−1)n+(2n)n
Let n=200
So, (401)200 and (399)200+(400)200
Consider, (401)200−(399)200
=(400+1)200−(400−1)200
=[200C0+200C1(400)199+200C2(400)198+.....+1]−[200C0−200C1(400)199+200C2(400)198+.....+1]
=2[200C1(400)199+200C3(400)197+....+200C199(400)]
=2.200(400)199+2.200[200C3(400)196+....+200C198(400)]
=(400)200+a positive number >(400)200
⇒(401)200−(399)200>(400)200
⇒(401)200>(399)200+(400)200
Hence, (2n+1)n>(2n−1)n+(2n)n