The largest integer satisfying the equation ∣∣4+log1/7x∣∣=2+∣∣2+log1/7x∣∣ is
Open in App
Solution
∣∣4+log1/7x∣∣=2+∣∣2+log1/7x∣∣
Clearly x>0.
Put log1/7x=t to obtain
|4+t|=2+|2+t|
Case 1: If t<−4 −4−t=2−2−t ⇒−4=0 This is always false. Case 2: If −4≤t≤−2 t+4=2−2−t t=−2 Case 3: If t>2 4+t=2+2+t ⇒4=4 From Case 1, Case 2, and Case 3, we get t=−2=log1/7x=−log7x[∵log1/ab=−logab] ⇒x=72=49 Ans: 49