The correct option is C 2+√3
Given equation x4+2x3−22x2+2x+1=0
x2+1x2+2[x+1x]−22=0
⇒[x+1x]2+2[x+1x]−24=0
Now put t=x+1x
⇒t2+2t−24=0
⇒(t−4)(t+6)=0
⇒t=4ort=−6.
Taking t=4
4=x+1x
x2−4x+1=0
∴x=2+√3,2−√3
Taking t=−6
−6=x+1x
x2+6x+1=0
∴x=−3−2√2,−3+2√2
Largest positive root is 2+√3.