(x−5)(x−7)(x+6)(x+4)=504⇒(x−5)(x+4)(x−7)(x+6)=504⇒(x2−x−20)(x2−x−42)=504
Assuming y=x2−x−20, we get
⇒y(y−22)=504⇒y2−22y−504=0⇒(y−11)2−121−504=0⇒(y−11)2=625⇒y=11±25⇒y=−14,36⇒x2−x−20=−14,36
So, we get two quadratic equation,
x2−x−6=0 and x2−x−56=0
Solving them,
x2−x−6=0⇒(x−3)(x+2)=0⇒x=−2,3x2−x−56=0⇒(x−8)(x+7)=0⇒x=−7,8
Hence, the largest root is 8.