The correct option is D 4
f(x)=2x3−3x2−12x+5 and −2≤x≤4
To find maxima, differentiate f(x) & put it equal to 0
f′(x)=6x2−6x−12=0
⇒x2−x−2=0
⇒x2−2x+x−2=0⇒x(x−2)+1(x−2)=0
(x−2)(x+1)=0
x=2,−1
f′′(x)=12x−6
f′′(2)=18>0
∴ At x=2, value of f(x) is minimum
f′′(−1)=−18<0
∴x=−1 can be point of maxima
∴ We check value of f(x) at x=−2,2,−1,4
f(−2)=−16−12+24+5=1
f(2)=16−12−24+5=−15
f(−1)=−2−3+12+5=12
f(4)=128−48−48+5=37
∴ At x=4,f(x) is maximum.