The largest value of non-negative integer a for which
limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}1−x1−√x=14 is ___
Given :
limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}1−x1−√x=14
It is in the form of limx→a[f(x)]g(x)=k
Let f(x)=−ax+sin(x−1)+ax+sin(x−1)−1
f(x)=sin(x−1)−0−a(x−1)sin(x−1)+(x−1)
limx→1f(x)=00
Using L’hospital’s theorem
limx→1f(x)=limx→1cos(x−1)−acos(x−1)+1=cos(1−1)−acos(1−1)+1=cos0−acos0+1=1−a2
∴limx→1f(x)=1−a2---(1)
Now, g(x)=1−x1−√x
limx→1g(x)=limx→11−x1−√x=1−11−1=00
Using L’hospital’s theorem
limx→1g(x)=limx→1−1−12√x=1×2=2
∴limx→1g(x)=2---(2)
Now,
limx→1[f(x)]g(x)=14
apply ln on both sides,
lnlimx→1[f(x)]g(x)=ln14
lnlimx→1g(x)lnf(x)=ln14
lnlimx→1g(x).limx→1ln(f(x))=ln14
2.lnlimx→1f(x)=ln14
2.ln(1−a2)=ln14 --(3)
⇒(1−a2)2=14
⇒(1−a2)=±12
⇒(1−a2)=12 and (1−a2)=−12
⇒1−a=1 and 1−a=−1
⇒a=0 and a=2.
But for a=2 we get a negative number raised to the power of a rational number.
and logarithm of a negative number is not define. [From (3)]
This is not always defined.
Hence a=0 is the right answer.