The largest value of the non negative integer ‘a’ for which
limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}1−x1−√x=14
Let f(x)=−ax+sin(x−1)+ax+sin(x−1)−1f(x)=sin(x−1)−0−a(x−1)sin(x−1)+(x−1)limx→1f(x)=00
Using L’hospital’s theorem
limx→1f(x)=limx→1cos(x−1)−acos(x−1)+1=cos0−acos0+1=1−a2
g(x)=1−x1−√x
limx→1g(x)=limx→11−x1−√x=00
Using L’hospital’s theorem
limx→1g(x)=limx→1−1−12√x=1×2=2
limx→1[f(x)]g(x)=14lnlimx→1[f(x)]g(x)=ln14limx→1g(x)lnf(x)=ln14limx→1g(x).limx→1lm(f(x))=ln142.lnlimx→1f(x)=ln142.ln(1−a2)=ln14(1−a2)2=14
Solving this we get a=0 and a=2.
But for a=2 we get a negative number raised to the power of a rational number. This is not always defined.
Hence a=0 is the right answer.