limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}1−x1−√x=14⇒limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}(1−√x)(1+√x)1−√x=14⇒limx→1{−ax+sin(x−1)+ax+sin(x−1)−1}1+√x=14⇒limx→1{sin(x−1)−a(x−1)sin(x−1)+x−1}1+√x=14⇒limx→1⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩sin(x−1)(x−1)−asin(x−1)(x−1)+1⎫⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪⎭1+√x=14⇒[1−a1+1]2=14⇒1−a2=±12⇒a=0,2
Hence, a=2 is the largest non negative integer.