34n=(34)n=81n=(1+80)n=1+nC1(80)+nC2(80)2+.....+nCn(80)n=1+80k
where k=nC1+nC2(80)+.....+nCn(80)n−1= integer
Now 334n=31+80k=3(380k)=3(3)2(16k)=3(9)16k=3(10−1)16k
=3[16kC0(10)16k−16kC1(10)6k−1+...........+16kC16k(10)0(−1)16k]
=3[16kC0(10)16k−16kC1(10)6k−1+...........+1]=3(10λ+1)
where λ=16kC0(10)16k−1−16kC1(10)6k−2+..........−16kC16k−1(10)
Thus 334n+1=30λ+4
Hence last digit is 4