The correct option is A π/6
4cos(x)[2−3sin2x]+(cos2x+1)=0
4cos(x)[3cos2−1]+2cos2x=0
Or
2cos(x)[6cos2x+cosx−2]=0
Or
2cos(x)=0 and 6cos2x+cos(x)−2=0.
Or
x=(2n+1)π2 and
cos(x)=−1±√1+4(12)12
=−1±712
Hence
cos(x)=12 and cos(x)=−23.
Since xϵ[0,π2] , hence cos(x) has to be positive.
Thus x=π2,π3.
Thus
π2−π3=π6.