The least integer greater than log215⋅log162⋅log316 is equal to
Open in App
Solution
let y=log215⋅log162⋅log316 ⇒y=log215⋅(−1)log62⋅(−1)log36[∵log1/ab=−logab&loga1b=−logab] =log15log2×log2log6×log6log3[∵logba=logalogb]
=log315[∵logba=logalogb]=log3(3×5)=log33+log35[∵log(ab)=loga+logb] =1+log35[∵logaa=1] Since, log5>log3 Therefore, y=1+log35>2 and the smallest possible integer is 3 Ans: 3