Given:
cos−1x+(sin−1y)2=aπ24 ⋯(i)
(cos−1x)(sin−1y)2=π416 ⋯(ii)
Let cos−1x=t1 and (sin−1y)2=t2
0≤t1≤π and 0≤t2≤π24
From (i)
0≤aπ24≤π+π24
⇒0≤a≤4π+1 ⋯(iii)
From (i) and (ii)
t1+t2=aπ24 and t1t2=π416
⇒t1(aπ24−t1)=π416
⇒t21−aπ24t1+π416=0
Since t1 is real, D≥0
⇒a2π416≥4π416
⇒a2≥4⇒(a+2)(a−2)≥0 ⋯(iv)
From (iii) and (iv)
2≤a≤4π+1
∴ The least integral value of a is 2.