The correct option is A 5
For (k−2)x2+8x+k+4>0, we need to check the following two cases:
Case 1) k−2>0 (concave up curve)
⇒k>2 .....(1)
Case 2) b2−4ac<0 (no intersection on X-axis)
⇒64−4(k−2)(k+4)<0
⇒(k−2)(k+4)−16>0
k2+2k−24>0
(k+6)(k−4)>0
⇒k∈(−∞,−6)∪(4,∞) ....(2)
From (1) and (2), it follows k>4
Therefore, least integral value is 5.